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Abstract—Network data in real-world tends to be error-prone due to
incomplete sampling, imperfect measurements, etc.; this in turn results
in inaccurate results when performing network analysis or modeling,
such as node classification and link prediction, on these flawed net-
works. In this paper, we aim to reconstruct a reliable network from a
flawed, undirected, unweighted network, a process referred to network
enhancement. More specifically, network enhancement aims to detect
the noisy links that are observed in the network but should not exist in
the real world, as well as to predict the missing links that do indeed
exist in the real world yet remain unobserved. While some attempts
have been made to detect either noisy links or missing links, few of
these works have considered unifying these two tasks, even though
they are inter-dependent and capable of mutually boosting each others’
performance. In this paper, we therefore propose E-Net, an end-to-
end graph neural network model, to leverage the mutual influence of
these two tasks in order to achieve both goals more effectively. On one
hand, detecting noisy links can benefit the performance of missing link
prediction, while on the other hand, predicting missing links can provide
indirect supervision for detecting noisy link detection when the labels of
these noisy links are unavailable. Moreover, by proposing a subgraph
extraction mechanism based on random walk with restart, the model
can be scaled up to large networks and is able to preserve the local
and global structural characteristics. The experimental results on several
types of large networks demonstrate that the proposed model obtains an
improvement of 10.7% on average in terms of F1 for predicting missing
links, along with an average of 3.7% improvement in terms of precision
for detecting noisy links compared with the state-of-the-art baselines.

Index Terms—Social networks, Network enhancement, Network ro-
bustness, Graph neural network

1 INTRODUCTION

Networks are ubiquitous and play a pivotal role in many
real-world domains, including social network analysis,
bioinformatics, chemistry, program analysis, etc. These net-
works offer rich topological features and generic connectiv-
ity patterns that can help us better understand the relational
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Fig. 1: Illustration of predicting missing links and detecting
noisy links in a unified framework. The dashed lines denote
the missing links to be predicted or the noisy links to be
detected given the existing links (denoted by the solid lines).

data. However, most networks obtained in the real world
are error-prone and structurally flawed due to incomplete
sampling [1], imperfect measurements [2], [3], individual
non-response and dropout [4], etc. This will inevitably in-
troduce many types of errors, including erroneous, ambigu-
ous and redundant information. Generally speaking, these
flawed structures can be caused by flawed links and flawed
nodes; we aim to solve the flawed link problem in this
paper. The flawed links can be categorized as noisy links and
missing links. In more detail, noisy links are those that are
observed in the constructed networks but do not actually
exist in the real world (false positives); for example, links in
a mobile network built upon calls between delivery drivers
and customers are most likely to be noisy links, as they do
not represent actual “social” relationships. Moreover, miss-
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ing links are those that do indeed exist in the real world, but
are unobserved in the constructed network (false negatives).
For example, if we simply establish a link between two per-
sons in a mobile network according to the call interactions
between them, some actual ”social” relationships will be
discarded due to the infrequent nature of these interactions.
The obtained flawed networks can adversely impact how
these networks are interpreted and damage the information
diffusion process, resulting in misleading conclusions [1].
Hence, it is of vital and practical importance to reconstruct
reliable networks from flawed networks — i.e., to remove
the noisy links and complete the missing links before net-
work analysis and network modeling is performed.

One straightforward way to deal with this problem is
to adopt heuristic metrics, such as the number of com-
mon neighbors, Jaccard Coefficient, Preferential Attach-
ment, Adamic-Adar, etc. [5], [6], [7], to simultaneously pre-
dict missing links and detect noisy links, i.e., to complete
a missing link if the score measured by one of the above
metrics is quite high and remove a noisy link if the score
is significantly low. Some existing works have proposed
additional metrics, such as node correlation [8] and link
reliability [9], and used them to identify the missing and
noisy links together using the method described above. The
most relevant work is SEAL [12], which uses a graph neural
network (GNN) to learn a suitable heuristic for link pre-
diction (). Inspired by this work, we utilize a similar GNN
structure to learn such a heuristic. However, most existing
works have ignored the mutual influence of these two kinds
of links, even though cooperation between the two tasks
can lead to improved capability for both. We present an
example in Figure 1 to illustrate the necessity of this mutual
influence. In all subfigures, the dashed lines denote the links
to be predicted or detected given the existing links (denoted
by the solid lines). On one hand, we demonstrate the effect
of noisy links on the missing links in Figure 1(c): when
predicting the missing link between nodes B and D, if the
links A-D and B-C have already been identified as noisy
links and removed beforehand, the connections between B
and D will be weakened, which will decreases the likelihood
of a link being created between B and D. On the other hand,
we demonstrate the effect of missing links on the noisy links
in Figure 1(d) (our query is (G, H) in this example): when
detecting whether or not the link B-G or H-I is noisy, if
the link G-H has already been predicted to be a missing
link and added beforehand, the connections between B and
G or those between H and I will be strengthened, which
will decrease the likelihood of the links B-G or H-I being
removed. This examples indicate that the mutual influence
between the two tasks can boost the performance of each
task. Thus, the main challenge to be addressed in this paper is
that of how to capture the mutual influence between the missing
links and noisy links.

In addition, super-large networks prevent us from lever-
aging the entire network structure to infer the relationships
(i.e., missing or noisy relationships) between two queried
nodes. To address this issue, many researchers extracted
subgraphs of the two queried nodes and inferred their
relationships based on the subgraphs [10], [11], [12]. These
approaches typically involve the simple extraction of the
one-hop or two-hop neighbors of the two queried nodes

and the relationships among them in order to compose the
subgraph. However, this subgraph may still be extremely
large when some hub nodes are traversed. For example,
in figure 1(a), a large number of neighboring nodes will
be expanded when node B is traversed. Moreover, the
expanded one-hop or two-hop neighbors lose the global
structural characteristics. For example, figure 1(a) presents
the one-hop subgraph of the queried nodes B and D. If A-D
and B-C are identified as noisy links and removed before
the relationship between B and D is predicted, B and D
will be disconnected in the one-hop subgraph. However, if
node E (which carries more global structural characteristics
than the one-hop neighbors) is included in the subgraph (cf.
figure 1(b)), there will be a path B-A-E-F-D that connects
B and D even if A-D and B-C are removed. Thus, another
challenge to be dealt with in this paper is that of how to extract
a small-sized subgraph that contains both the local and graph
structural characteristics.

In summary, the present paper addresses the above
challenges and make the following contributions:
• We propose a unified model to jointly identify noisy

links and missing links due to their inter-dependence
and mutual performance boosting. More specifically, we
propose an end-to-end dedicated graph neural network-
based model, named the Enhanced Network model (ab-
breviated as E-Net) which can capture these mutual influ-
ence between the two tasks. On one hand, the denoised
network cleaned by the noisy link detector can benefit
the performance of missing link prediction. On the other
hand, the objective of missing link prediction can provide
indirect supervision for noisy link detection when the
labels of the noisy links cannot be easily obtained. This
approach will produce a model with high resistance to
noise.

• To improve the computational efficiency, we propose a
RWR subgraph extraction approach based on random
walk with restart to extract the subgraphs for each of the
two queried nodes; this enables our model to scale up to
large networks while capturing both the global and local
structural characteristics.

• We conduct extensive experiments on several types of
large networks. Our experimental results demonstrate
that when the two tasks are trained jointly by our model,
performance improvements can be achieved in terms of F1
score as high as 10.5% compared with the model that does
not denoise the networks; moreover, an improvement as
high as 2.6% compared with the model that predicts the
missing links and detects the noisy links independently
(Cf. Figure 1(e) for details).

Organization. The remainder of this paper is organized
as follows. We first formulate the problem and provide
the necessary definitions. We then introduce the proposed
model, including the subgraph extraction procedure, the
model architecture and the learning objectives. Next, we
present the experimental settings and the results. Finally,
we review some related works and conclude this paper.

2 PROBLEM FORMULATION

Before introducing our method, we first provide the neces-
sary definitions and formulate the problem in this section.
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The key notations are listed in Table 1. In most cases,
we use lower-case letters to denote scalars (e.g., l), upper-
case letters for sets (e.g., V and E), bold lower-case letters
for column vectors (e.g., x), and bold upper-case letters to
represent matrices (e.g., A). When indexing the matrices,
Aij denotes the element at the i-th row and the j-th column,
while Ai denotes the vector at the i-th row. There are also
some exceptions.

In practice, we often obtain a network by sampling the
nodes and edges from a complete network, or creating a
network by following certain heuristic rules. It is therefore
inevitable that the obtained network will contain incorrect
information, especially at the edge level (when compared
with edges, it is usually much easier to obtain a reliable
node set) 1.
Definition 1. Flawed Network. We define an incomplete net-

work with unreliable edge set as a flawed network, which
contains two major types of flawed links: noisy links and
missing links. Here, noisy links are defined as edges that
are observed in the network but do not exist in the real
world, while missing links are defined as the edges that
do indeed exist in the real world, but are unobserved in
the network.

More formally, we represent a flawed network as G =
(V, E), where V is the set of nodes with |V| nodes, while E is
the set of edges with |E| edges. We further denote A as the
adjacency matrix of G and D as the degree matrix of A. We
augment G with the node attribute matrix X if nodes have
certain attributes in particular applications.

However, conducting network analysis directly on
flawed networks may produce misleading results. It is
therefore vital to study how the input flawed network G
can be enhanced; this process can be formally formulated as
follows.
Problem 1. Network Enhancement. Given a flawed network
G = (V, E) and a state matrix Y = [Yij ]i,j=1...|V|, where
Yij ∈ {1, 0, ?} denote confirmed existing, confirmed ab-
sent and uncertain links respectively; our goal is to infer
the true value (1 or 0) of the uncertain links (Yij =?) in Y ,
i.e., to predict the missing links (εij /∈ E and Yij =?) and
to detect the noisy links (εij ∈ E and Yij =?). These two
tasks (missing link prediction and noisy link detection)
compose the whole problem of network enhancement.

Regarding attempts to solve the network enhancement
problem (i.e., detecting both missing links and noisy links),
some previous attempts have been made in totally unsuper-
vised and supervised settings, while no such works exist
in the partially supervised setting. Moreover, in most real-
world scenarios, it is difficult to obtain the labels of both the
noisy links and the missing links to conduct supervised net-
work denoising. Notably, such labels can provide us valu-
able information enabling us to get more accurate results.
Thus, we focus here on a more practical setting: namely,
partially supervised network enhancement, i.e., where we
can only obtain the labels of one kind of links. To reduce
the difficulty of obtaining labels, in this work, we suppose
that the labels of the missing links (εij /∈ E and Yij = 1)

1. In this paper, we aim to solve the flawed link problem and leave
the flawed node problem for the future.

TABLE 1: Description of some major notations

Notation Description

G, G∗ The flawed network and the enhanced network
V The node set of G
E , εij The edge set of G and the edge between node i and node j in G
Y,Yij The true state matrix and state label of εij
Ŷ The predicted state matrix
X The node attribute matrix of G
A The adjacency matrix of G
D The degree matrix of A
G The input local subgraph
V , vi The node set of G and node i in G
E, eij The edge set of G and the edge between vi and vj in G
T, ti The relative position matrix and the position label of vi
X, xi The node attribute matrix of G and the attribute vector of vi
A, A∗ The adjacency matrix and the denoised weight matrix of G
L∗ The Laplacian matrix of A∗

p The proximity vector of the starting node in RWR
s(·, ·) The noise scoring function
q, q(m) The query of the two nodes and the m-th query
Zl The output of the l-th denoising graph convolution layer
H The subgraph representation
dl The output dimension of the l-th graph convolution layer
L The number of graph convolution layer

can be obtained or generated in some way (e.g., we hold
out some existing links as the missing links), while the
labels of the noisy links ( εij ∈ E and Yij = 0) are not
available. We then leverage the labels of the missing links
to supervise both the missing link prediction and the noisy
link detection; i.e., the links that satisfy εij /∈ E and Yij = 1
serve as the training data of our model, where the noisy
link detection is encapsulated as a component in the model
without direct supervisions. Formally, we use q ∈ Q, where
Q = {(νi, νj)|εij /∈ E ,Yij =?, νi ∈ V, νj ∈ V}, to denote
a query pair. In the following parts, a symbol marked with
the superscript (m) denotes that this symbol corresponds to
the m-th query, i.e., Q = {q(m)}Mm=1.

3 OUR APPROACH

In this section, we first introduce our subgraph extraction
approach, which paves the way for our subsequent net-
work enhancement methods. Then, given a query q and
its corresponding extracted subgraph G, the first objective
is to predict whether we should create a link between the
two nodes in the query, while the second objective is to
detect the noisy links in the subgraph. We encapsulate these
two objectives in our proposed E-Net model, an end-to-end
graph neural network architecture, in order to capture the
mutual influence of the two objectives. The overall model
architecture is illustrated in Figure 2.

3.1 RWR Subgraph Extraction

The first step in our approach involves extracting a sub-
graph for each pair of the queried nodes to represent their
structural characteristics. We predict the relationship of the
two queried nodes based on the extracted subgraph rather
than the entire network; this is because it is costly to
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Fig. 2: E-Net model architecture. The dashed lines denote uncertain links (Yij =?), while the thickness of the links
corresponds to their reliability.

compute for the entire network, and may even be infeasible
to complete such a computation when the entire network
is too large. Some studies [10], [11], [12] have verified
that computing on local subgraphs can provide a good
approximation of a wide range of heuristic network metrics,
such as Common Neighbors, Jaccard Coefficient, Preferen-
tial Attachment, etc., which are computed on the entire
network. Another theoretical study [13] has proven that the
PageRank algorithm computed on the entire network has
a bounded approximation error under the condition of a
n-hop subgraph. Moreover, since the input graph is noisy,
utilizing global information from the entire graph may
inevitably introduce error messages from distant parts of
the network, potentially resulting in misleading predictions.
Thus, we consider it unwise to take too many global metrics
into consideration. Inspired by these studies, we extract a
local subgraph around a pair of the queried nodes, then
infer the relationship between them based on the subgraph.

Some existing works have already utilized subgraphs to
represent the nodes’ structural information. For example,
Zhang et al. [14] were the first to use local enclosing sub-
graphs to learn the nodes’ structure information. However,
these authors truncated the subgraphs to be of the same
size, which resulted in some topographical information
being omitted. Another work, SEAL [12], kept the com-
plete one-hop or two-hop neighbors of the queried nodes;
however, most of these extracted fixed-size subgraphs and
were restricted to within the one-hop or two-hop local
structures, which were narrowly focused and totally ignored
the global structural characteristics. Moreover, the one-hop
or two-hop subgraphs can be extremely large when certain
hub nodes are traversed, which may seriously reduce the
computational efficiency of the learning algorithm. Other
sampling methods, such as GraphSAGE [15], uniformly
sampled neighbors and thus ignored the reliability/noise
of links.

To avoid the limitations of the above methods and cap-
ture the reliable local and global structural characteristics
to a greater extent through sampling, we propose a RWR
subgraph extraction approach based on random walk with
restart (RWR) [35]. More specifically, given a pair of the
queried nodes, rather than keeping all the κ-hop neigh-
bors when κ is a fixed hop number, we conduct several
random walks with restart from each of the two queried
nodes respectively. The nodes and edges traversed in these
random walks form the corresponding subgraph of this pair
of queried nodes. Formally, we aim to find a solution to the
following linear system,

p = λAD−1p + (1− λ)e (1)

where p is the proximity vector of the starting node, with
p[i] denoting the probability of being at node i; moreover,
e is a unit vector having e[i] = 1 if i is the starting node
(else 0). D is the degree matrix with each diagonal value
Dii =

∑
j Aij . The teleport (or restart) probability λ ∈ (0, 1]

is a parameter that controls the probability of going to
the starting node (with probability 1 − λ) or jumping to
a randomly chosen neighbor (with probability λ), which
enables both the local and global topological structures to
be preserved. More specifically, the starting vector e allows
us to preserve the node’s local topological structure even in
a limit distribution, while AD−1 allows us to further visit
their neighborhoods. The rate of decrease as we move away
from the starting node can be adjusted by λ. Note that this
equation is also similar to that of personalized Pagerank,
where I characterizes the nodes’ personalized preferences
and is filled with real values [16].

By following the proposed sampling method, we ex-
tract multiple subgraphs for each query to avoid over-
fitting. More specifically, for the m-th query q(m) ∈
Q, we extract c corresponding subgraphs, forming〈
G

(m)
1 , q(m)

〉
,
〈
G

(m)
2 , q(m)

〉
, ...,

〈
G

(m)
c , q(m)

〉
in the for-

mat of 〈subgraph, query〉 pair. The resulting M × c
〈subgraph, query〉 pairs for all theM queries then constitute
our input data of the model. Intuitively, the corresponding
subgraphs of a query can be treated as its surroundings,
i.e., the context that provides it with the structural evidence,
which capture the topological information and are thus
crucial for predicting whether or not a link between the two
queried nodes should be created.

The advantages of the proposed RWR subgraph extrac-
tion method can be summarized as follows. 1) the restart
mechanism in the random walk algorithm (i.e., e in Eq. 1)
enables us to capture both local and global structural in-
formation over the long term; 2) when encountering high-
degree nodes, visiting only a certain proportion of their
neighbors will save significantly on space and time costs
(see Figure 1(a) and (b) for comparison); 3) the extraction of
multiple subgraphs can prevent our model from overfitting
and enhance its generalizability. Meanwhile, sampling dif-
ferent subgraphs from the same query is in line with popular
data augmentation approaches.

Given a query pair and its corresponding extracted sub-
graph, we can turn the objective of predicting whether a link
should exist between two nodes into a graph (subgraph)
classification problem. This graph classification setting is
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inductive, since the test instances will never be seen during
training. This therefore situates our model in an inductive
setting; what we only need is to extract the corresponding
subgraphs of unseen links for inference.

3.2 Model Architecture

The second step of our approach involves jointly predicting
the missing link between the two queried nodes and the
noisy links included in the extracted subgraphs of these
queried nodes. The key insight here is that the two objec-
tives of predicting missing links and detecting noisy links
can influence each other. For example, a noisy link will
propagate noisy information to its neighbors, which may
result in incorrect node-level and even graph-level repre-
sentation and further degrade the performance of missing
link prediction. We therefore integrate the two objectives
into a carefully designed end-to-end graph neural network
framework that aims to capture the correct information
while reducing the impact of the flawed information.

Consider a subgraph G = (V,E) extracted from G for a
query q, where V = {v1, . . . , vn} and E = {eij |vi, vj ∈ V }
denote the node set and edge set of subgraphG respectively,
and n denotes the number of nodes in V . The corresponding
adjacency matrix is denoted as A ∈ Rn×n. The attribute
matrix is denoted as X, where xi indicates the attribute
vector of vi. We further record the relative position of each
node in G to the query q as additional features, as the nodes
closer to the queried nodes will provide more important
information. Here we apply Double-Radius Node Labeling
(DRNL), proposed by [12], to calculate the relative position.
More specifically, for the two queried nodes vi and vj ,
we assign the label t = 1 to each of them. Then, for any
node vk ∈ G with (d(vk, vi), d(vk, v)j)) = (1, 1), we assign
the label t = 2, where d(·, ·) represents the shortest path
between two nodes. Nodes with double-radius (1, 2) or
(2, 1) get the label t = 3, while nodes with (2, 2) get 4, and
so on and so forth. We then transform the label into a one-
hot vector ti and concatenate it with the attribute vector xi
to represent the input feature of node vi. The position label
vector ti of all nodes in G makes up the relative position
matrix T.

Our learning model contains a series of layers, as fol-
lows: 1) a noisy link detection layer, which aims to detect
noisy links via a noise scoring function; 2) denoising graph
convolution layers, which learn robust node representations
by preventing or decreasing the flow of information along
noisy links; 3) a pooling layer, which learns a function that
maps the node-level representations to graph-level repre-
sentations; 4) a missing link prediction layer, to predict
whether there is a missing link between two queried nodes.

Noisy link detection layer. Efficiently choosing heuristic
scores with different properties for unsupervised noisy link
detection has been a difficult proposition for some time,
since no supervision can be given. We therefore tactfully
utilize the missing links to provide indirect supervision. We
use a noise scoring function, s(·, ·), to measure the reliability
of each link in the subgraph: the lower the score, the higher
the likelihood that the target link will be a noisy link. In this
paper, we instantiate the function as a weighted average

of K heuristic score functions with learnable weights, as
follows,

s(vi, vj) =
K∑

k=1

wk · sk(vi, vj), (2)

where sk(·, ·) is the k-th heuristic score function to estimate
the similarity between nodes, while wk is its correspond-
ing learnable weight, which can be indirectly guided by
the objective of predicting missing links. We use Common
Neighbors, Jaccard Coefficient, Preferential Attachment [18],
Adamic-Adar [20], Resource Allocation [6] and the cosine
similarity of the two nodes’ attributes as these heuristic
score functions, which can guarantee the detection capabil-
ity. Although we do not have any labels for the noisy links,
we can optimize the weights in the noise scoring function
via the indirect supervision of the missing link prediction
objective.

Given the noise scoring function s(·, ·) of each link, the
subgraph G can be transformed into a denoised weight
matrix A∗ ∈ Rn×n, in which the (i, j)-th entry A∗ij =
s(vi, vj) ∗ Aij . Later, we will conduct a subsequent study
study on the denoised weight matrix A∗.

Denoising graph convolutional layers. We next intro-
duce the denoising graph convolutional layers, which can
be understood as a generalization of the classical graph
convolutional network. The general idea here is as follows:
when performing message aggregation for a node, rather
than simply absorbing the messages from all its neighbors,
we reduce or prevent the aggregation of messages from
noisy links. Although the Graph Attention Neural Network
(GAT) [17] also allocated different levels of attention to
different neighbors, the attention coefficient represents the
contribution of a node to another, and the contribution of
node i to node j is different from that of node j to node i.
Moreover, it has been experimentally verified that GAT per-
formed the same as or worse than GCN in noisy graphs [19];
this is because GAT introduces too many parameters when
learning attention coefficients, which leads to overfitting to
noise. By contrast, we have only k learnable parameters
(wk). In addition, our noise scoring is based on general
heuristics to guarantee detection capability, while this is
hard and unexplainable for GAT.

However, in our model, the influence of node i on node
j is assumed to be equivalent to that of node j on node
i, where this influence is calculated by our noise scoring
function s(·, ·). Our rationale for adopting this aggregation
method is that we assume noisy links exert a global influ-
ence on the entire graph; thus the denoised weight matrix
A∗ can be considered as our global weight function when
conducting node aggregation.

We then use multiple denoising graph convolution lay-
ers to update the node representation. To be more specific,
the layer-wise forward-pass updating of node representa-
tions can be expressed as follows,

Zl+1 = f

 Ã∗∥∥∥Ã∗
∥∥∥

2

ZlW l

 , (3)
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where the initial embedding of each node is represented by
its attribute and relative position label, i.e., Z0 = [X; T]. The
notation Zl ∈ Rn×dl

denotes the output embeddings of the
l-th graph convolution layer. Moreover, notation Ã∗ = A∗+
I, which means that the self-effect of each node is included
when performing aggregation. Notation W l ∈ Rdl×dl+1

is a
layer-specific weight matrix of trainable graph convolution
parameters, while f is a nonlinear activation function. With
the inclusion of A∗, the information flow along the noisy
links will be decreased or prevented, which helps us to learn
more robust node representation.

Sequentially stacking too many graph convolutional lay-
ers might lead to an over-smoothing problem, which could
result in the representation learned from the last graph con-
volutional layer being too coarse to capture the structural
information [21], [22]. Therefore, rather than using only the
node representations generated by the last denoising graph
convolution layer, we instead use the node representations
generated by each of the L denoising graph convolution
layers to generate high-quality node representations. Our
node representations are obtained by concatenating the out-
put Zl, l = 1, ..., L horizontally, as follows,

Z1:L :=
[
Z1, ...,ZL

]
, (4)

where L represents the number of graph convolution layers
and Z1:L ∈ Rn×

∑L
1 dl

.

Pooling layer. After the node-level representations are gen-
erated, the next step is to learn a graph-level representation
based on these. Since our goal is to predict the existence
of a link between the two queried nodes, the graph-level
representation should be able to both capture the local
structure of the queried nodes and place more emphasis on
the two queried nodes.

We adopt SortPooling [23] to obtain the graph-level
representation that can be compared between the different
subgraphs. More specifically, we fix the dimension of the last
denoising graph convolutional layer dL as 1. Subsequently,
all nodes in the subgraph can be sorted according to the
continuous output values ZL ∈ Rn×1 of the last denoising
graph convolution layer. We then concatenate the node
embeddings of the top n̄ nodes as Z ∈ Rn̄×

∑L
1 dl

.
Moreover, since the queried nodes’ attributes can pro-

vide additional information, we add additional attributes of
the queried nodes into the graph embedding. Finally, the
graph-level representation is obtained as follows,

H = [CONV (Z) ; x(1)
q , x(2)

q ], (5)

where x(1)
q and x(2)

q represent the node attributes of the
two queried nodes that serve as our additional evidence,
while CONV denotes the several 1-D convolutional layers
and maxpooling layers applied to the concatenated node
embeddings Z.

Missing link prediction layer. Finally, we aim to predict
whether a missing link exists between the two queried
nodes. Since we have already obtained the corresponding
subgraph representation of our queried nodes, we can make
prediction directly based on this representation, as follows,

Ŷq = softmax (MLP (H)) , (6)

where MLP denotes a multilayer perceptron, which is fol-
lowed by a softmax layer used to get the graph classification
result. In fact, these graph classification results can also be
taken as the results of our missing link prediction.

3.3 Model Learning

Main objective. The primary goal of our learning proce-
dure is to minimize the gap between the obtained probabil-
ity of missing links and their ground truth. Accordingly, we
use cross-entropy to minimize the following loss function,
Lce,

Lce = −
M∑

m=1

dL∑
b=1

Yq(m)b · ln Ŷq(m)b (7)

where Yq(m) and Ŷq(m) are, respectively, the ground truth of
missing links and the predicted probability corresponding
to the query q(m).

Auxiliary denoising objective. Recall that we obtained
the denoised weight matrix A∗ in Section 3.2, which can
only be guided by the loss of the missing link prediction
(Lmissing) in our current setting. In practice, it is difficult to
learn a suitable denoised network that is supervised only
by the indirect signals from the missing links. To resolve
this issue, we add an auxiliary denoising objective. More
specifically, we propose to minimize the graph Laplacian
quadratic form on node attribute X, which serves as our
additional regularization,

Ldenoise = tr(XT L∗X), (8)

tr(XT L∗X) =
n∑

i=1

∑
euv∈E

(xui − xvi)
2 A∗uv

=
∑

euv∈E
‖xu − xv‖22 A∗uv

(9)

where Eq. 9 is the Laplacian quadratic form on signal
X, i.e., a smooth graph signal model. This approach has
been widely utilized to address various learning problems,
such as regularization and semi-supervised learning on
graphs [24], [25]. We have adopted this additional objective
for the following reasons.
• Global Smoothing. Global smoothing is conceptually

similar to the argument that smoothness is an indis-
pensable property of model robustness [26]. The global
smoothing objective used here can be considered as a
penalty applied when two nodes with dissimilar at-
tributes are close to each other in the learned denoised
network A∗. Because, according to Eq. 9, if vi and vj have
dissimilar attributes, the link eij is more likely to be noisy,
and will thus guide the entry A∗ij to become a smaller
probability.

• Sparsity. In most scenarios, it is desirable that the ob-
tained graph should be a sparse one [27], [28]. Similarly,
we also want our learned denoised network A∗ to be more
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sparse; i.e., some entries of A∗ij can be reduced to zero if
the edge eij has a high probability of being noisy. Note
that the sparsity discussed here is a kind of weighted
sparsity where each edge euv is weighted by ‖xu − xv‖22;
i.e., it prefers to encourage the link between two nodes
with dissimilar attributes to be weakened or removed.
By contrast, when two nodes share similar attributes,
‖xu − xv‖22 will become small, meaning that Ldenoise will
not overpower Lce when updating A∗ (i.e., Ldenoise will
have little effect on A∗ in this case). More specifically,
when we cannot obtain node attributes and assume that
X = I, the regularization term will be exactly equal to a
commonly defined sparsity penalty tr(L∗) =

∑
i6=j A∗ij .

This is because tr(XT L∗X) = tr(L∗XXT ) = tr(L∗) =
tr (I−A∗) = n− tr(A∗) =

∑
i6=j A∗ij when X = I.

Joint loss function. We conduct joint optimization over the
cross-entropy objective as well as the auxiliary denoising
objective, which enables our model to capture the seman-
tic meaning (cross-entropy loss) while retaining the noise-
calibrated representation (auxiliary denoising loss). Finally,
the total loss function L can be formulated as follows,

L = Lce + αLdenoise (10)

where α > 0 is a positive coefficient to trade off the two
losses: Lce and Ldenoise.

4 EXPERIMENTS

In this section, we evaluate the benefits of our proposed
method with the aim of answering the following questions:
• Q1. Can the missing links be predicted by E-Net?
• Q2. Can the noisy links be detected by E-Net?
• Q3. Does our proposed RWR subgraph extraction strategy

improve the training efficiency and effectiveness?
• Q4. How superb is the enhanced network reconstructed

by E-Net, when evaluated with downstream task node
classification?

• Q5. Is E-Net sensitive to the choices of hyperparameters?
More details about the datasets and baselines are in-

troduced below. Our code is publicly available at: https:
//github.com/zjunet/E-Net.

4.1 Experimental Setup

Datasets. We employ five datasets for evaluation. Three
are widely used citation networks in the network analysis
literature, namely Cora, Citeseer and Pubmed, while the
fourth is a large-scale user network dataset provided by
FinVolution Group 2. The fifth dataset is a protein network,
namely PPI network, which is undirected and unweighted
in nature. The statistics of the datasets are presented in Table
2.
• User network. This is a large-scale user network between

83,286 anonymous registered users, without any iden-
tifiable information. Here nodes are users and edges
correspond to the connections by call. For each anony-
mous user, we can obtain their demographic information

2. FinVolution Group is a leading Fintech Corporation in China.

provided at registration (including age, sex, birthplace,
educational level, marital status, work type and so on) as
user attributes. To quantify the ability to identify missing
links, we further randomly remove 10% of links, which
will serve as our missing link samples. Fortunately, FinVo-
lution Group has also provided us with some limited in-
formation regarding anomalous nodes that are identified
as fraudsters, intermediaries or delivery drivers; thus, we
can intuitively choose those links from anomalous nodes,
as well as those with short call duration user, as our
limited noisy link ground truth. The user network with
the above-mentioned missing and noisy links is the input
flawed network G; after removing the simulated missing
links and the identified noisy links, we obtain the real
clean network Gclean.

• Citation network. We also validate our method across three
popular citation networks: Cora, Citeseer and Pubmed.
The Cora and Citeseer networks mainly contain machine
learning papers, while the Pubmed network contains sci-
entific publications pertaining to diabetes. Here nodes are
documents, while edges are the citation links between
two documents. Each node has a human-annotated topic
as the class label as well as a feature vector. For Cora
and Citeseer, the feature vector is a sparse bag-of-words
representation of the document, while for Pubmed, the
feature vector is assigned real values that indicate the
term-frequency-inverse document frequency (TFIDF) of
the corresponding word from a dictionary. These nodes
are all labelled to differentiate their topic categories across
the three datasets. Note that these networks have been
well-constructed and are widely used; therefore, in the
following, we assume that each of these networks is error-
free and can thus serve as our clean network Gclean. More-
over, to quantify the ability to identify flawed links, we
generate flawed networks by randomly removing links
(creating the missing link samples), and randomly adding
nonexistent links (constituting the noisy link samples).
After these simulated noisy links and missing links are
added, we get the input flawed network G.

• PPI network [61]. This is a subgraph of the Homo Sapiens
Protein-Protein Interaction (PPI) network that is prepro-
cessed in [30], where nodes are proteins and edges rep-
resent the interactions between two proteins. Each node
belongs to a gene set, which serves as our node attributes.
We create missing links and noisy links in the same
manner as for the citation networks.

Baselines. We compare our model with several baselines:
• HEU [6], [18], [20], [29]. We extract five popular heuris-

tics (HEU), including the number of Common Neigh-
bors (CN), Jaccard Coefficient, Preferential Attachment
(PA) [18], Adamic-Adar (AA) [20] and Resource Alloca-
tion (RA) [6], and train a logistic regression classifier on
these heuristic scores. This method only takes the graph
structure into consideration.

• ATT. This method is based on the attributes (ATT) of
queries and does not consider graph structure at all. We
then train a MLP classifier on these attributes.

• ENS. We further create an ensemble (ENS) of the above
node attributes and heuristic scores and train a MLP
classifier on them.

https://github.com/zjunet/E-Net
https://github.com/zjunet/E-Net
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TABLE 2: Dataset statistics

Dataset Type #Nodes #Edges #Attributes Noisy Rate Missing Rate

FinV User network 83,286 114,422 776 10.6% 10%
Cora Citation network 2,708 5,429 1,433 10% 10%

Citeseer Citation network 3,327 4,732 3,703 10% 10%
Pubmed Citation network 19,717 44,338 500 10% 10%

PPI Protein network 3,890 76,584 50 10% 10%

TABLE 3: Experimental results with standard deviation on missing link prediction.

FinV Cora Citeseer Pubmed PPI

AUC F1 AUC F1 AUC F1 AUC F1 AUC F1

HEU 0.593 ± 0.04 0.345 ± 0.08 0.745 ± 0.03 0.561 ± 0.15 0.692 ± 0.06 0.509 ± 0.09 0.639 ± 0.05 0.424 ± 0.14 0.804 ± 0.04 0.400 ± 0.06
ATT 0.860 ± 0.04 0.598 ± 0.07 0.570 ± 0.02 0.286 ± 0.02 0.584 ± 0.07 0.286 ± 0.05 0.820 ± 0.03 0.500 ± 0.03 0.704 ± 0.05 0.388 ± 0.04
ENS 0.834 ± 0.06 0.603 ± 0.07 0.754 ± 0.05 0.420 ± 0.05 0.720 ± 0.06 0.398 ± 0.07 0.813 ± 0.02 0.489 ± 0.02 0.809 ± 0.04 0.402 ± 0.05

Node2vec 0.736 ± 0.05 0.443 ± 0.06 0.741 ± 0.09 0.406 ± 0.09 0.707 ± 0.09 0.389 ± 0.10 0.908 ± 0.07 0.609 ± 0.08 0.812 ± 0.05 0.485 ± 0.06
SEAL - - 0.781 ± 0.10 0.496 ± 0.17 0.772 ± 0.03 0.521 ± 0.05 0.962 ± 0.01 0.750 ± 0.03 - -
SEAL (RWR) 0.892 ± 0.03 0.615 ± 0.03 0.808 ± 0.12 0.589 ± 0.18 0.793 ± 0.05 0.552 ± 0.06 0.969 ± 0.02 0.751 ± 0.04 0.831 ± 0.06 0.529 ± 0.06
GAT (RWR) 0.884 ± 0.04 0.608 ± 0.03 0.795 ± 0.12 0.535 ± 0.17 0.791 ± 0.06 0.548 ± 0.06 0.932 ± 0.04 0.642 ± 0.05 0.819 ± 0.08 0.502 ± 0.07

E-Net (n) 0.888 ± 0.04 0.611 ± 0.04 0.801 ± 0.11 0.548 ± 0.15 0.795 ± 0.06 0.552 ± 0.06 0.945 ± 0.04 0.687 ± 0.04 0.821 ± 0.07 0.517 ± 0.06
E-Net (fix) 0.918 ± 0.01 0.697 ± 0.02 0.890 ± 0.02 0.631 ± 0.04 0.871 ± 0.01 0.598 ± 0.03 0.952 ± 0.01 0.762 ± 0.02 0.855 ± 0.02 0.603 ± 0.02
E-Net (s-) 0.921 ± 0.02 0.703 ± 0.03 0.898 ± 0.01 0.651 ± 0.04 0.883 ± 0.01 0.607 ± 0.04 0.943 ± 0.01 0.720 ± 0.01 0.854 ± 0.03 0.606 ± 0.03
E-Net 0.930 ± 0.03 0.712 ± 0.03 0.891 ± 0.02 0.633 ± 0.03 0.875 ± 0.03 0.614 ± 0.05 0.947 ± 0.01 0.741 ± 0.01 0.857 ± 0.02 0.600 ± 0.03

• Node2vec [30]. A network embedding method, which
learns latent topological features from network structures.

• SEAL [12]. A link prediction method based on graph neu-
ral networks. This method is also applied to the extracted
subgraphs.

• SEAL (RWR). SEAL using RWR subgraph extraction for
ablation study.

• GAT (RWR). Graph Attention Neural Network (GAT) [17]
is also conducted on the extracted RWR subgraphs to
facilitate comparison with our denoising graph convolu-
tional layers. Here, the other components in this setting
remain the same as ours.

• E-Net (n). A variant of our method. When learning edge
reliability, this method is based on node attributes and
Node2vec embeddings rather than the K heuristics. We
learn a linear mapping f : [xi; ei; xj ; ej ] → s(vi, vj) and
follow a sigmoid function, where ; denotes concatenation
and ei is the Node2vec embedding of node vi.

• E-Net (fix). Another variant of our method, which does
not consider the mutual influence between noisy links and
missing links. More specifically, in this variant, we do not
perform end-to-end training to identify noisy and miss-
ing links. Instead, we first calculate six similarity scores:
cosine similarity of node attributes, Common Neighbors
score, Jaccard score, Preferential Attachment score [18],
Adamic-Adar score [20] and Resource Allocation score [6].
We then average these scores to obtain a general score.
Based on these results, we take the calculated score rather
than training the noise scoring function s(·, ·).

• E-Net (s-). A third variant of our method, where the
auxiliary denoising regularization is removed.

Our flawed link candidates in the test set contain all the
links with Yij =?. We control the number of real and fake
missing links with a proportion of around 1:5, as well as the
number of real and fake noisy links, also a proportion of
around 1:5. For each dataset, we consistently use 80% of the

data as a training set, 10% as a validation set and 10% as a
testing set. We further implement an early stopping strategy,
where we stop the training if the performance ceases to
improve or only improves in a small range (1e-3) for seven
successive epochs on the validation set. All models are
implemented in Pytorch with the Adam optimizer used for
optimization [31]. All experiments are conducted on a single
machine with an Intel Xeon E5 and one NVIDIA TITAN
GPU. In the following, the reported results are all averaged
over 10 runs with random training/validation/testing splits
and random weight matrix initializations.

4.2 Experimental Results

Missing Link Prediction. Table 3 presents the results. It
can be seen from the table that our model consistently
achieves the best or the second best performance across
all datasets, which provides an affirmative answer to our
motivating question Q1. Firstly, we compare E-Net with
methods that only use node attributes and heuristics mea-
sures (i.e., HEU, ATT and ENS). We observe that our method
achieves much better performance, as E-Net is able to dis-
cover new structural and node-specific attributes. Secondly,
we compare E-Net with latent feature-based methods (i.e.,
Node2vec and SEAL); here, SEAL also performs the graph
convolutional operations on an extracted subgraph, but
does not denoise the network at all. We can see that E-
Net also outperforms these latent feature-based methods.
One reason for this is that E-Net prevents a proportion of
the messages from being propagated along flawed links,
thus significantly decreasing the adverse effect of incor-
rect structure information. Interestingly, SEAL cannot be
successfully applied to the FinV and PPI datasets; that is,
SEAL cannot get the results for more than one entire day
because of memory and time costs. The reason for this is that
SEAL extracts all two-hop neighbors of query nodes when
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TABLE 4: Precision score on noisy link detection. Note that
we set the number of selected links (i.e., the denominator)
as the number of real noisy links; this means that precision
is equal to recall, F1 and accuracy metrics under this setting.

FinV Cora Citeseer Pubmed PPI

ATT 0.173 0.139 0.143 0.166 0.163
CN 0.297 0.297 0.267 0.297 0.472
Jaccard 0.288 0.288 0.242 0.288 0.472
PA 0.218 0.218 0.117 0.218 0.677
AA 0.241 0.241 0.271 0.241 0.471
RA 0.237 0.237 0.260 0.273 0.470
ENS 0.144 0.237 0.117 0.156 0.679
NE - 0.117 0.051 0.024 0.174
E-Net 0.348 0.319 0.248 0.298 0.692

constructing subgraphs; since a large number of hub nodes
exist in the FinV dataset, while the PPI dataset is a much
denser graph, this results in increased space and time costs
when learning from large subgraphs. We further conduct an
ablation study on SEAL (RWR) to demonstrate that our RWR
subgraph extraction mechanism is more effective than fixed-
size subgraph extraction. Furthermore, the comparison with
GAT (RWR) highlights the significance of our denoising
graph convolutional layers. Another interesting finding is
that that none of the baseline methods can perform well on
all datasets, while by contrast E-Net performs consistently
well (+5.5% in terms of AUC and +10.7% in terms of F1).
Another observation is based on a simplified version of our
model, namely E-Net (fix): that is, if we do not perform joint
training, the performance will decrease to some extent in
most cases. This is because E-Net (fix) ignores the mutual
influence between noisy links and missing links.

It also should be noted here that E-Net (s-) sometimes
outperforms E-Net. This is because the performance of the
auxiliary denoising regularization term relies on the quality
of the node attributes X. For example, we can observe that
ATT largely outperforms HEU on the FinV dataset, which
to a certain extent reflects that node attributes play a more
important role than graph structure in this FinV dataset.
Thus, E-Net, which applies this regularization term, per-
forms better than E-Net (s-). On the contrary, we can see that
HEU performs much better than ATT on the Cora datasets.
This finding suggests that graph structure plays a more
important role than node attributes on the Cora dataset;
accordingly, E-Net (s-), which lacks this regularization term,
performs better than E-Net on the Cora dataset. Therefore,
we suggest that it is better not to add this regularization
term if the node attributes X are not sufficient in the graph.

Noisy Link Detection. Unlike the missing link prediction
task, the noisy link detection task is based on a list of all
observed links ordered according to their noise scores s(·, ·)
(see Section 3.2). Here, we compare with eight unsupervised
methods and take them as our noisy scores: 1) ATT, a cosine
similarity between two query nodes; 2) CN, Jaccard, PA, AA,
and RA, the five heuristic measures mentioned before; 3)
ENS, the mean value of these six scores; 4) NE [32]. Since
NE is designed for weighted networks, we here apply NE
to unweighted networks to fit our problem setting and
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Fig. 3: Running time comparison of different subgraph
extraction approaches.

adapt the denoised edge weights as our noise scores; that
is, we detect noisy links by picking the last C links with
the smallest weights. To quantify the ability to identify
noisy links by means of our proposed method, we adopt
a standard metric, namely precision, which is widely used
in some related works [8], [33]. Precision is defined as the
ratio of true positive noisy links to the overall number
of selected links. More specifically, we pick up the last C
links according to s(·, ·) (which serve as our selected links),
while Cn is the number of the truly observed noisy links
within this selected set; thus, precision equals Cn/C . In this
experiment, we set C as the number of all the actual noisy
links in each dataset, meaning that the number of selected
links is equal to the number of real noisy links. Under these
settings, precision is therefore also equal to thes recall, F1
and accuracy metrics.

Table 4 summarizes the performance measured by pre-
cision/recall/F1/accuracy score. These results provide us
with an answer to Q2: in short, our method can maintain
a stable performance across all datasets, while the other
baseline methods sometimes perform very poorly on spe-
cific datasets. For example, Preferential Attachment (PA)
achieves poor performance on the Citeseer dataset, with a
result only slightly better than chance. Moreover, node at-
tribute similarity also performs poorly, which indicates that
this kind of side information is not always available in all
scenarios. Unexpectedly, we find that using the mean value
of all heuristic scores (ENS) sometimes yields worse perfor-
mance than using the individual score, except on the PPI
dataset; this reflects the fact that the weights between these
scores are very difficult to learn. We therefore suggest that
averaging is not a good choice in some cases, and should
therefore be carefully considered before it is applied. By
contrast, the missing link objective in our method can pro-
vide useful guidance for learning more reasonable weights
among different scores in noisy link detection. Furthermore,
we find that NE is unable to deal with the FinV dataset
at all; this is because NE conducts optimization directly on
the adjacency matrix, which results in high computational
complexity.

The Effect of RWR Subgraph Extraction. We here conduct
a comparison with the enclosing subgraph extraction method
proposed in [14], where all two-hop neighbors of query
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TABLE 5: Experimental results on missing link prediction
with different subgraph extraction approaches.

Cora Citeseer

AUC F1 AUC F1

Enclosing 0.883 0.621 0.858 0.584
RWR 0.891 0.633 0.875 0.614

nodes are extracted according to the settings provided in
the source paper.

Figure 3 presents the running time of two different
subgraph extraction approaches, both of which are applied
on E-Net. We retain the same hyperparameters and model
structure for both. As can be seen from the results, the
enclosing method is much slower than the proposed RWR
subgraph extraction method on all datasets due to the for-
mer’s greedy extraction scheme. In particular, on the FinV
dataset, the enclosing method takes more than two full days
to train an epoch; this is because there are a large number
of hub nodes in this dataset, which makes the subgraphs
extremely large. By contrast, the RWR extraction method
deftly avoids this problem.

We further assess the effectiveness of two subgraph
extraction approaches in Table 5 (we do not evaluate the
enclosing version on Pubmed and FinV due to the high
associated space and time costs), which verifies the RWR
version’s superior performance. All of these results suggest
that in practical applications, the RWR version is performed
as a fast and accurate approach to extract subgraphs, which
is particularly well-suited to large graphs and graphs con-
taining lots of hub nodes (such as FinV). Thus, the question
Q3 is answered here.

Node Classification on the Enhanced Network. In this
section, we aim to evaluate whether the enhanced network
can improve the performance of downstream tasks on the
Cora dataset. Here, we take node classification as our task.
Given an input flawed network G, we will reconstruct the
enhanced network G∗ via E-Net and further compare it with
the real clean network Gclean. To be more specific, when
constructing the enhanced network G∗, we first remove
the links in noisy link candidates whose ranking is in the
last C according to s(·, ·), where we set C as the number
of real noisy links, then add the missing links predicted
by our model in the set of missing link candidates. We
then apply node2vec [30] to each network and use the
learned embedding of each node to predict its label. Each
label belongs to one of seven classes, representing its topic
category. We select 80% of nodes for the training set and
allocate the remaining 20% to the testing set. With regard
to the target classifier, we use multilayer perceptron (MLP).
We also apply early stopping to avoid overfitting. The sizes
of the hidden layers are set to 64, 16, 16 and 4, respectively,
and ReLU is used as the activation function. For the em-
bedding learning, we adopt the default hyper-parameters
of node2vec3 and set the size of embedding as 64.

Table 6 presents the comparison between the perfor-
mance on the different networks constructed based on the

3. https://github.com/aditya-grover/node2vec

TABLE 6: Performance of node classification on Cora.

Networks Macro-F1 Micro-F1 Weighted-F1

Flawed network G 0.613 0.629 0.626
Enhanced network G∗ 0.662 0.677 0.676

Clean network Gclean

(Ground Truth) 0.778 0.786 0.785

Cora dataset. As the node classification task on the Cora
dataset is a multi-class classification problem, we here use
Marco-F1, Micro-F1 and Weighted-F1 as our evaluation met-
rics. Unsurprisingly, the performance on the clean network
Gclean surpasses that on the other networks, which demon-
strates the importance of enhancing the flawed networks.
This will also serve as our ground truth result for this classi-
fication task. Moreover, for the results on the clean network
the clean network Gclean, we find that the performance on
the enhanced network G∗ clearly exceeds that on G by a
significant margin; this demonstrates that enhancing the
flawed network is very helpful for the downstream tasks.

To facilitate improved understanding, we plot the vi-
sualization of the input flawed network G, the enhanced
network G∗ by E-Net and the real clean network Gclean in
Figure 4. From the figure, we can discern the following
pattern: our enhanced network G∗ (Figure 4 (b)) exhibits
more discernible clustering compared with the input flawed
network G (Figure 4 (a)). This is straightforward, because
we have shown that enhancing the flawed network does
aid the node classification task, which is closely related
with this clustering visualization result. Another interesting
observation from the visualization is that our enhanced
network G∗ exhibits a natural structure that is intuitively
very similar to the clean network Gclean (Figure 4 (c)). Based
on the above discussed results, we can now easily answer
the question Q4.

Parameter Analysis. In this section, we analyze four crucial
hyper-parameters: the number of RWR when extracting sub-
graph nRWR, the sparsity coefficient α, the hidden dimension
of GNN layers dl (here, we let all GNN layers have the same
dimension), and the number of GNN layers L.

In order to further determine the optimal parameters
settings, we vary the values of nRWR, α, dl and L in order
to observe more closely how the performance of missing
link prediction will change. In detail, we study nRWR ∈
{10, 20, 30, 40, 50}, α ∈ {1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3},
dl ∈ {8, 16, 32, 64, 128}, L ∈ {1, 2, 3, 4, 5} respectively. It
should be noted here that the the number of RWR nRWR
remains at 30 while studying α, dl and L, that the sparsity
coefficient α remains at 1e-4 while studying nRWR, dl and L,
that the hidden dimension of GNN layers dl remains at 32
while studying nRWR, α and L, and that the number of GNN
layers L remains at 4 while studying nRWR, α and dl. Here,
we present some suitable values of these parameters for
reference. We report the F1 score on the Cora dataset for the
missing link prediction task in Figure 5. As we can see, and
remarkably, E-Net can achieve relatively good performance
regardless of changes in parameters (still better than the
baseline methods), which answers the question Q5.

More specifically, from Figure 5(a), we observe that our
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(a) Flawed network (b) Enhanced network (c) Clean network

Fig. 4: Visualization of Cora networks, where different colors represent different node categories.

(a) nRWR: # of RWR (b) α: sparsity coefficient

(c) dl: hidden dimension of
GNN

(d) L: # of GNN layers

Fig. 5: Hyper-parameter analysis, where the y-axes are fixed
in the same range.

model yields good results when nRWR is equal to 30. This
can be explained with reference to the fact that only a small
amount of local structural information is captured when
nRWR is set to be small, preventing us from capturing suf-
ficient information, while too many observations would in
turn prevent us from capturing the most important elements
of graph structure. From Figure 5(b), we can see that we
can maintain our results at above 0.61 when α is set to be
larger than or equal to 1e-6, which suggests the necessity
of our auxiliary denoising objective. From Figure 5(c), the
results seem to be less sensitive to the hidden dimension of
GNN layers. From Figure 5(d), the performance improves
on the whole if more GNN layers are used, and decreases
only slightly after stacking 5 layers. This makes intuitive
sense, since GNN with deeper layers gives the model a
greater capacity to represent graphs. However, when the
layer number is too high (equal to 5), the performance starts
to drop slightly. This observation is due to the fact that
GNN tends to result in over-smoothing after stacking too
many layers, which is consistent with many conclusions in

previous works [22], [34], [36]. Moreover, we concatenate all
the outputs of each GNN layer to generate the final high-
quality node representation, which avoids this problem to
some extent.

5 RELATED WORK

Network enhancement in our work is mostly relevant to the
following three topics: 1) the link prediction methodologies
used to evaluate the tendency of links to exist between the
pairwise nodes; 2) network enhancement, which aims to
remove noisy links and add missing links; 3) graph neural
networks (GNNs), which apply deep models to relational
data in order to learn high-level node representations. In
the below, we review studies and applications relevant to
these topics.

Link Prediction. Link prediction is the most straightfor-
ward means of identifying link existence in a network [29],
[37], [38], [39]. Here, we will discuss three categories of link
prediction algorithms. The first one focuses on computing
the pairwise node similarity scores using heuristic mea-
sures, such as common neighbors (CN), Jaccard, preferential
attachment (PA) [18], Adamic-Adar (AA) [20], resource allo-
cation (RA) [6] etc. However, these predefined heuristics are
handcrafted and only consider limited topological patterns.
Accordingly, we bring them together as an ensemble and
train a logistic regression classifier on multiple heuristic
measures simultaneously in order to obtain better perfor-
mance (this serves as our first baseline: HEU). The second
category focuses on side information, such as node and edge
attributes, and does not consider the network structure at
all; thus, these approaches cannot explain how the networks
are formed. For example, in a mobile network, a user’s
personal information can be considered as a type of side
information on nodes (here, the nodes are users), while
call duration can be considered a kind of side information
relating to edges. The most common approach is to combine
all side information together and train a multilayer per-
ceptron classifier on it (this serves as our second baseline:
ATT). While this approach can sometimes achieve superb
performance when there is some annotation or preference
on the nodes or edges, it is also important to note that this
kind of side information is hard to obtain in many situations.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

The third type of methods are based on latent features,
i.e., the latent properties or representations of nodes. A
low-dimensional embedding of nodes can be learned by
skip-gram models [15], [40], [41], [42], [43], [44] or matrix
factorization methods [30], [45], [46], [47]. Skip-gram models
have achieved promising results in recent studies. Grover
et al. [30] conducted experiments to show that this type
of network embedding method outperformed traditional
methods to a large extent on link prediction tasks. For
their part, the latter methods are commonly derived from
adjacency or Laplacian matrices, which are computationally
expensive when large-scale networks are involved. While
this type of method can capture more global topological
properties, these methods are also conducted in a transduc-
tive way, meaning that they need to be retrained when they
encounter new nodes or new networks. In addition, they
are also more difficult to interpret than heuristic features.
The existing work on link prediction that is most related
to ours is SEAL [12], the authors of which verified that
computing on local subgraphs can well approximate a range
of heuristics and proposed using a GNN to learn from local
subgraphs for link prediction purposes. However, these
authors also ignored the mutual influence between noisy
links and missing links. In addition, their extracted enclos-
ing subgraph can become extremely large if hub nodes
are traversed and is only able to capture local structure
evidence. Inspired by this work, we utilize a similar GNN
structure, but take the mutual information of noisy links
and missing links into consideration and thereby propose
an improved RWR subgraph extraction approach.

Network Enhancement. The concept of network enhance-
ment (NE) was first proposed by Wang et al. [32]. Its original
purpose was to improve the signal-to-noise ratio of a flawed
input network. NE is conducted by directly optimizing the
adjacency matrix, which is a process with high computa-
tional complexity; as a result, it is mainly applied on biology
networks in a limited scale and is difficult to extend to larger
networks. NE takes a flawed, undirected, weighted network
as input and outputs a denoised network by removing the
weak links and retaining the strong links. This method can
also be utilized to detect missing links, although the authors
did not further analyze this point. Here, we extend this
concept to our setting, i.e., removing noisy links and com-
pleting missing links in a flawed, undirected, unweighted
network, an approach also referred to as network enhance-
ment. While several other works [8], [9] have also dealt
with missing link prediction and the noisy link detection in
one framework, none of these considered the dependency
between missing links and noisy links. Moreover, there is
another line of research that might share similar ideas to
ours [48], [49], [50], [51]. These works aimed to conduct
network embedding when encountering noisy networks.
However, they only concentrate on how to learn a reliable
node representation. By contrast, our work focuses more
on how to identify flawed links explicitly and then recon-
struct a clean network from a noisy one; this reconstructed
network can then be applied to various downstream tasks,
including but not limited to network embedding.

Furthermore, some works from the bioinformatics area
have also utilized similar ideas to reconstruct Protein-

Protein Interaction (PPI) networks [56], [57], [58], [59], [60].
Hulovatyy et al. [58] analyzed several existing link pre-
diction measures and introduced novel sensitive measures
of the topological similarity of extended neighborhoods in
order to denoise PPIs, although they only evaluated their
measures on missing links. Lei et al. [56] proposed recon-
structing PPIs by computing topological similarity metrics
via a random walk-based procedure. Following this idea,
Alkan et al. [57] further employed a local neighborhood
evaluation of these similarity metrics and accordingly pro-
posed an iterative network reconstruction process. The it-
erative nature of these processes also enables the capture
of some aspects of the mutual influence between missing
links and noisy links to a certain extent. However, most of
these works are designed or evaluated only on PPIs, and
the computation of the similarity matrix suffers due to high
memory cost.

Graph Neural Networks. As our paper does not have a
major focus on graph neural network (GNN) innovations,
but rather concentrates on a novel application of GNNs,
we only introduce GNNs briefly here. GNNs, a new type
of neural network, have been used to learn node repre-
sentations from graph structure and node attributes by
extending neural networks to capture the messages passed
along edges, an approach that has attracted increasing in-
terests [15], [17], [36], [52], [53], [54], [55]. The learned node
or graph representation can then be applied to various
downstream tasks, such as missing link prediction. The
early work proposed in [52] applied a convolution filter to
graph data based on the graph Laplacian spectrum, which is
both not spatially localized and computationally expensive.
To address these limitations, several subsequent works have
focused on designing efficient localized filters [53], [54]. An-
other trend involves the use of neighborhood aggregations
to learn from local neighborhoods rather than the entire
graph, which takes advantage of both the properties of the
neighbors and local topological structures [15], [17], [36],
[55]. GCN [36] and GAT [17] are the two models most
relevant to our approach. Graph Convolution Networks
(GCN) [36] integrate local graph structures and the features
of nodes to obtain node representation from the hidden
layers. Graph Attention Networks (GAT) [17] employ a self-
attention mechanism over the target node and its neighbors
to learn adaptive weights of the neighbors. Most GNN struc-
tures can be summarized as a message-passing framework;
however, none of them consider learning from noisy data.
Since flawed links can substantially harm the information
diffusion process, it is vital to prevent the aggregation
of messages from noisy links, which is achieved by our
extended version of GNN.

6 CONCLUSION

In this work, we study the problem of network enhance-
ment, i.e., deleting noisy links and completing missing
links. We propose E-Net, an end-to-end GNN model, to
unify these two tasks due to their inter-dependence and
ability to mutually boost each others’ performance. More
specifically, on one hand, detecting noisy links can benefit
the performance of missing link prediction; on the other
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hand, predicting missing links can provide indirect su-
pervision for noisy link detection when the labels of the
noisy links are unavailable. Moreover, to further reduce the
computational cost, we propose a RWR subgraph extraction
method. Compared with the existing enclosing method, the
RWR subgraph extraction method is better able to capture
global and local structure information and can also reduce
the space and time cost. We apply our model on several
types of networks, including a large real-world network,
and evaluate the effectiveness and efficiency of our model
in various ways.

Studying network enhancement is an important prob-
lem, and this work provides essential insights for further
study. In terms of future work, it will be interesting to see
whether E-Net or its extension can be adopted as a defense
strategy to make networks more robust against network
adversarial attacks, which situates the problem in a much
tougher situation than the noisy one. We also hope that
this work will inspire further works to investigate well-
defined methods in order to study and enhance the network
robustness.
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